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1 Introduction

In a repeated game, players face the same strategic problem–the stage game–multiple

times, with payoffs accruing each round. Folk theorems illustrate how the equilibrium

set typically expands substantially beyond the mere repetition of a stage-game Nash

equilibrium (NE). This is most often presented as great news: the common good is

compatible with the pursuit of selfish interests. The Prisoners’ Dilemma provides a

classic, textbook example: cooperation can arise at equilibrium even though defect-

ing is the dominant strategy. Friedman (1971), a classic reference for an early folk

theorem, studies only feasible payoffs that strictly Pareto dominate some stage-game

NE, and most experiments in repeated games concentrate on the beneficial nature of

repeated interaction. But the set of equilibrium outcomes can expand even further:

Fudenberg and Maskin (1986) shows that players’ utility can be brought down close

to their minimax level, which is oftentimes much lower than the stage-game equilib-

rium payoff (although not for the Prisoners’ Dilemma, where the two coincide). Thus

repeated interaction can also potentially be detrimental. Whether it is actually so is

an important, yet so far overlooked, empirical question. We test in the lab a new,

simple and easily interpretable stage game to shed light on this topic.

Imagine an aggressor (a bully) who wants to take resources from a disempowered

victim. A bystander observes the interaction, and finds such exploitation repugnant.

Will the bystander intervene? If there is no exogenous cost to intervention (e.g., risk

of injury), then he would certainly intervene in a one-time interaction. Bystander

complacency can potentially arise in equilibrium, however, if repeated encounters are

likely. The possibility of the bully retaliating against the bystander can be a credible

threat in the repeated game, even if it is costly to the bully. Thus, repetition opens

up the possibility of equilibria with an endogenous cost of intervention. The mere fact

that the bully has the possibility of punishing the bystander at a cost may allow him

to implicitly coerce the bystander to be complacent with the theft. Of course, other

bullying-free equilibria are possible too.

We designed a simple stage game (the ‘Bystander game’) reflecting the above

considerations to experimentally investigate the possibility of bad repetition. If played

only once, or more generally if repetition is unlikely, then backward induction (and NE)

leads to a unique prediction: the bystander will intervene to stop the bully should he

try to take money from the victim. Thus, in this game the unique equilibrium outcome
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of the stage game is both egalitarian and Pareto efficient (even sum-efficient). This

game would be of limited interest if repeated interaction could only make participants

weakly better off, as the stage-game Nash equilibrium is already Pareto efficient,

and would thus be the anticipated outcome in every period. This outcome is even

more salient because it is egalitarian. Notice, though, that new conventions, beyond

the scope of simple Nash-reversion strategies used in Friedman (1971), become self-

enforcing when the continuation probability is large enough. For instance, it can be

sustainable for the bystander to go along with the bully’s theft (on the equilibrium

path), even if this is costly, due to fear of the bully punishing him in future rounds

otherwise (off path). Outcomes in this equilibrium with theft see increased inequality

accompanied by a decrease in aggregate payoffs. The bully may want such equilibria

to be focal, leading to departure from an efficient and egalitarian outcome, but it is

an empirical question whether this occurs.

Our experiment tests behavior for two continuation probabilities: δ = 75%, under

which it is theoretically possible in our benchmark model for the bully to sustain

transfers from the victim in every period, and δ = 10%. To preview our results,

transfer attempts are frequent in both treatments, occurring approximately two-thirds

of the time in the first round of a match. Since requesting a transfer is weakly dominant

in the stage game, this is not particularly surprising, and we observe only a small and

statistically insignificant amount of learning by bullies: for instance, comparing the

first five matches to the last five, there is a slight increase (decrease) in transfer

requests in the later matches when δ is high (low). On the other hand, there does

appear to be some learning by bystanders in the very early matches of both treatments,

with behavior settling fairly quickly to significantly different levels as a function of δ.

Bystanders are rarely complacent when δ = 10%, but we observe a 42% complacency

rate when δ = 75%. We observe a decrease in total surplus and an increase in

inequality relative to the egalitarian baseline of the game (with the bully the clear

benefactor). With the rate of transfer requests relatively stable and similar across

treatments, these differences are attributable to the difference in complacency rates as

δ varies. Our observations are broadly consistent with the fact that successful transfers

can occur in equilibrium when δ = 75%, but are not expected when δ = 10%. When

δ = 75%, bystanders who intervene to protect the victim in the first round face an

approximately 1/3 chance of punitive action by the bully in the second round (we

observe that this rate varies significantly by gender, with women less likely to react
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punitively).

We discuss related literature below, before formalizing the game and laying out the

experimental procedure in Section 2. Section 3 develops the theoretical benchmark.

Section 4 discusses our experimental results.

Related Literature

There is a substantial experimental literature on infinitely-repeated games, which is

typically implemented in the lab using a random termination rule, as in the present

paper. These studies are often interested in when and how better outcomes prevail

in the repeated Prisoners’ Dilemma; see Table 3 in Dal Bó and Fréchette (2018) for a

list of references. Though the literature on infinitely repeated games has most often

focused on the prisoners’ dilemma, other stage games have been tested as well. Even

then, as discussed in Dal Bó and Fréchette (2018, Section 7), the focus has been on

the potential benefits of cooperation, e.g. increasing cooperation by adding options

to punish, sustaining tacit collusion, promoting trusting behavior, and contributing

more in public good games. In typical experiments with the trust game and public

good games, the minimax payoff levels and the Nash equilibrium payoffs of the stage

game still coincide. They need not coincide in the quadratic-payoff structures spec-

ified in industrial organization experiments, which consider large action spaces and

vary parameters determining whether actions are complements or substitutes, to an-

alyze which is more conducive to collusion. Though the vast majority of such studies

consider only finite repetition, Mermer et al. (2021) considers infinite repetition (the

distribution of match payoffs there is highly skewed above Nash payoffs).

The bully’s option to penalize the bystander is an instance of costly punishment

(paying a cost to decrease another player’s payoff). Important early works on this

topic include Ostrom et al. (1992) and Fehr and Gächter (2000, 2002). An important

difference is that the punishment in those works is a means to potentially sustain better

outcomes, whether in a public goods game or the prisoner’s dilemma. In our work,

costly punishment only raises the possibility of bad equilibrium outcomes instead, and

is wielded by the bully.

The stage game we study may call to mind classic entry-deterrence games, to

the extent that a player may wield a punishment action to obtain a better payoff

under repetition. One could think of the bully as being a challenger who decides

whether to stay out of a market (leaving the victim alone) or enter it (attempting
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to steal from the victim). Under that reinterpretation, the bystander would be the

incumbent being challenged in that market. The bystander intervening would amount

to fighting the entrant. Otherwise, she is accommodating it. The analogy is imperfect

though, as a third firm (the victim) is involved and, more importantly, intervention

only brings payoff back to their baseline level when the challenger stays out, instead

of the incumbent having an action to punish the challenger for entering the market.

In our game, it is the bully (entrant) who can punish the bystander (incumbent). The

strategic considerations are thus quite different in entry games and ours. Another

main difference is that the experimental literature on entry games, such as Jung

et al. (1994), has focused on finitely-repeated games and the role of reputation under

incomplete information.

The possibility of perverse outcomes has been considered in more elaborate re-

peated interactions with incomplete information. While at first conjectured to always

be beneficial, Ely and Välimäki (2003) point out that the reputational concerns of a

long-run privately-informed player who repeatedly interacts with short-lived players

can undermine his commitment power, erasing any surplus; see also Ely et al. (2008).

However, Grosskopf and Sarin (2010) experimentally test situations where reputation

can be either good or bad, and observe that reputation is rarely harmful, though

benefits are weaker than predicted by the theory.

Fearon (1995) provides another interesting instance where dynamics may create in-

efficiency, but again for different reasons than those we explore. He explains inefficient

wars as the outcome of a dynamic interaction with stochastically changing fundamen-

tals. Two countries have claims over a resource providing a regular profit flow. Pareto

efficiency is obtained when countries peacefully share profits in each period. But of

course the countries’ outside option (waging war in the hope of acquiring and keeping

the resource forever after) impacts each period’s profit split. Fearon observes that de-

termining ownership through war can be unavoidable at equilibrium when countries’

relative strengths (e.g., winning probability) vary over time. A country expecting to

grow weaker may prefer war today, as its profit share will otherwise diminish in the

future. The other country would prefer giving higher profit shares in the future to

avoid war today, but such promises are not credible; see Tingley (2011) for an ex-

perimental test of this idea, and McBride and Skaperdas (2014) for a setting where

current conflict impacts future strategic position. Of course, dynamic bargaining in
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the shadow of conflict is subtler than the mere repetition of a stage game,1 and the

possible necessity of preventive war is not the consequence of folk theorems.

The general combination of coercion, complacency and detrimental outcomes

prompted by fear of future punishments, is somewhat reminiscent of Padró i Miquel

(2007). His theoretical model shows how the presence of ethnic identities and the

absence of institutionalized succession may allow for large, inefficient rent extraction

by the rulers. In this case, supporters are disciplined by a fear of facing an equally

inefficient ruler who favors another group. The logic of the argument, however, is

unrelated to folk theorems in repeated games, as Padró i Miquel characterizes the

unique Markov-perfect equilibrium of his model (a stochastic game). By contrast,

we study the empirical prevalence of detrimental outcomes that are supported by

non-stationary strategies in a repeated game, as is standard in folk theorems.

2 Bystander Game and Experimental Procedure

We start by describing the bystander game we tested, and its loose interpretation,

before presenting its neutral implementation in the lab.

The bystander game comprises a bully, a bystander, and a helpless victim who

has no strategic choices. Each player starts with an initial utility of 100. The bully

can either do nothing, harm the bystander (at a cost of 2 utils to himself and 50

utils to the bystander), or attempt to steal from the victim. For theft to succeed,

he needs the bystander to choose complacency over protecting the victim. Successful

theft leads to a social loss: (i) the bystander incurs a loss of 10 utils, and (ii) the

bully gains only 40 utils while the victim loses 50. Bullying fails when the bystander

intervenes, leaving payoffs unchanged (100 each). Of course, one could imagine many

alternative formulations, but our purpose is to offer a stylized model capturing some

of the general forces at play, not to offer a precise model of a specific situation.

While we use suggestive language to describe the bystander game above, options

and player names were described to experimental subjects in neutral language, with-

out using terms like bully or theft. The extensive form of the game is presented in

Figure 1, with the neutral language presented to subjects in the main labels and their

interpretations in parentheses. At the beginning of the experiment, each subject is

1First, war offers an outside options that stops future bargaining altogether. Second, countries’
relative strengths must change over time, which in turn changes payoffs.
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Player 1

(100, 100, 100)

Baseline (do nothing)

(140, 90, 50)

Yes (be complacent)

(100, 100, 100)

No (intervene)

Transfer from
3 to 1 (steal)

(98, 50, 100)

Deduct from 2 (harm bystander)

Player 2

Figure 1: Bystander game tree. The first payoff is for Player 1 (the “bully”), the
second is for Player 2 (the “bystander”), and the third is for Player 3 (the “victim”).
The main labels in the figure reflect the neutral action and player labels used during
the experiment; the suggestive interpretations in parentheses were not used.

randomly assigned to one of three possible roles: Player 1, Player 2, or Player 3 (corre-

sponding to the bully, bystander, and victim, respectively). The assigned role is held

for the duration of the session. Player 1’s options are called Baseline, Deduct from 2,

and Transfer from 3 to 1 ; these correspond to doing nothing, attacking the bystander,

and attempting theft, respectively. Player 2’s options are called Yes and No, which

correspond to agreeing to theft and stopping it, respectively. We provide subjects with

a table describing how many experimental points each player gets from each of the

four possible combinations of choices in the stage game (i.e., Baseline, Deduct from

2, Transfer from 3 to 1/Yes, Transfer from 3 to 1/No), using the numbers shown in

Figure 1. The instructions clarify that Player 1 moves first.

Each session has 15 matches. At the start of every match, each subject is matched

into a three-person group, constructed by randomly drawing one Player 1, one Player

2, and one Player 3. Players stay in their three-person group for the duration of the

match. Within a match, each group plays exactly one supergame. A supergame may

consist of multiple rounds. Each round was played sequentially, in accordance with the

extensive form in Figure 1; and Player 2, if required to make a decision due to a transfer

request, was expressly informed that a transfer request had been made by Player 1. At

the end of each round, subjects learn whether their supergame ends or continues to the

next round. The probability of another round is held constant throughout a session,
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at either 75% or 10%. A subject’s payoff in a match is the sum of payoff(s) accrued in

the round(s) of that match. In each round of the supergame, group members play the

above bystander game. At the end of each round, the three players in each group are

told the choices made in that round, and the resulting payoffs, within their group. At

the end of the experiment, each subject is paid their dollar payoff from one randomly

chosen match in addition to the $8 show-up fee. Experimental points are converted

to dollars at the rate of $0.05 per EP. Player identities remain anonymous. Subjects

are not told what roles other subjects play, or the payoffs others receive.

All sessions were conducted at the Brown University Social Sciences Experimen-

tal Laboratory, which is equipped with sunken terminals and vertical privacy panels

between desks. Subjects could participate in at most one session. Subjects were

recruited via the BUSSEL website. A total of 225 subjects participated in the ses-

sions, which took place in 2017 and 2018.2 There were 120 subjects for δ = 75% and

105 subjects for δ = 10%. The instructions, available in the Online Appendix, were

provided in paper format at the start of the experiment and read out loud by the ex-

perimenter. The experiment was programmed using the z-Tree software (Fischbacher,

2007). Prior to starting the first match, subjects were asked to complete a compre-

hension quiz through the z-Tree interface. After the final match, subjects were given

an optional exit survey. Subjects were paid in cash before leaving the laboratory.

3 Theoretical Benchmark

As is common in the experimental literature on repeated games, we conduct our

analysis while assuming that players maximize their own monetary payoffs. We discuss

the possibility and implications of more complex preferences further below. We will

formulate our hypothesis after establishing four observations. The proof of the first

two are left to the reader.

2A referee inquired as to why the study was not pre-registered. This was not an active decision,
and reflects the time period during which the experiment took place. As noted by Abrams et al.
(2020) (pertaining to data from 2017 through part of 2019): “...perhaps more telling is that only 8%
of the working papers in the NEP report on experimental economics are registered. Interestingly,
none of the RCTs published in the premier field journal Experimental Economics are registered.
These RCTs consist entirely of lab experiments, suggesting that the norm is such that researchers do
not register lab experiments.” We also note that (a) the experimental design is driven by a precise
theoretical question, with the predictions in our main hypothesis guided by Observations 1 through
4 below, and (b) we follow the well-established experimental literature on infinitely-repeated games
in mostly focusing on first-round choices.
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Observation 1 Each player getting 100 EPs is the unique SPE outcome (even the

unique NE outcome) of the bystander game played once. This outcome is egalitarian,

Pareto efficient, and even sum efficient.

Observation 2 Whatever the continuation probability, each player getting 100 EPs

in each round is the unique SPE outcome (even the unique NE outcome) that weakly

Pareto dominates the stage-game equilibrium.3

Observation 3 Each player getting 100 EPs in each round is the unique SPE

outcome (even the unique NE outcome) when δ = 10%.

Proof. Indeed, successful transfers cannot be sustained in that case: even if Player 1

were to impose the harshest possible punishment on Player 2 by choosing Deduct from

2 forever after (which is not incentive compatible for Player 1), deviating to No nets

10− 40 δ
1−δ

for Player 2, which is strictly positive if δ = 10%. ■

Intuitively, when considering SPE of the repeated game, Player 2’s disutility from

selecting Yes in response to a transfer request makes it more difficult to sustain a

non-egalitarian outcome. For this to be possible, δ must be sufficiently high.

Observation 4 The equilibrium set is much larger when δ = 75%. In particular,

Player 1’s average discounted payoff can range at equilibrium from 100 to 140 (the

upper bound corresponding to successful transfers in every period), while Player 3’s

average discounted payoff can range at equilibrium from 50 to 100.

Proof. Consider the following strategies:

Transfer Requests and Retaliation (TRR): Player 1 chooses Transfer

from 3 to 1, except for choosing Deduct from 2 once immediately after any

round where Player 2 was supposed (according to the strategy below) to

3This remains true when Pareto comparisons apply only to Players 1 and 2, who act in the game.
Therefore the standard logic of Nash-reverting punishments would still not sustain any outcomes
beyond repetition of the stage NE in a variant of the game that excludes Player 3. We note that
one could create a two-player variant where sum inefficiency also arises under transfers (e.g., having
the payoffs (110, 80) instead of (150, 90)). The equilibrium logic we highlight remains unchanged in
such a variant, and we would expect similar qualitative results. One benefit of having a third player
is the natural interpretation of the game in terms of bystander intervention. Moreover, if pro-social
preferences play any role here at all (the literature suggests their impact on behavior is limited in
repeated games when cooperation is sustainable as part of a selfish equilibrium), then baseline payoffs
are only more appealing to all players. Thus, seeing successful transfers, with outcomes away from the
(100, 100, 100) equal split, is only more surprising and further evidence towards the repeated-game
considerations we put forth.
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say Yes but says No instead;

Complacency for Fear of Retaliation (CFR): Player 2 chooses Yes

unless Player 1 has ever failed to deduct him immediately after choosing

No (in which case he continues choosing No.)

The only non-trivial incentive conditions to check, which depend on the probability

of continuation, are for Player 2 to choose Yes when he is expected to do so, and for

Player 1 to choose Deduct from 2 following a deviation to No by Player 2. The former

means Player 2 must be willing to lose 10 EP in the current round, to avoid losing 40

EP if there is a next round: −10 + 40δ > 0, or δ > 1/4. The latter means Player 1

must be willing to lose 2 EP in the current round, to gain 40 EP in all future rounds:

−2 + 40 δ
1−δ

> 0, or δ > 1/21. These conditions are satisfied when δ = 75%. Given

that Player 1 can also guarantee herself a payoff of 100 EP’s in each period (e.g., by

picking Baseline in each round), which of course remains an equilibrium outcome, we

conclude that the range of discounted average payoffs is now the interval [100, 140] for

Player 1. The equilibrium with succesful transfers gives Player 3 his minimal average

discounted payoff of 50. Alternatively, repeating the the stage-game equilibrium gives

him his maximal average discounted payoff of 100, which shows that the whole range

of payoffs, [50, 100], is possible at equilibrium. ■

The existence of an intuitive equilibrium where Player 2 is complicit due to fear

of retaliation from Player 1, makes it reasonable to expect some subjects in the role

of Player 1 to receive a discounted average payoff that is strictly larger than in the

low-δ treatment, at the detriment of Player 3. Of course, this goes hand-in-hand

with greater inequality and less sum-efficiency. We can thus formulate the following

testable hypothesis:

Hypothesis. Complacency and successful transfers should be rare when δ is low,

but significantly more frequent when δ is large. Thus, in the latter case we expect an

increase in Player 1’s payoff at the expense of the other players, greater inequality and

lower total surplus.

4 Experimental Results

There were 525 supergames played in the 10% treatment, with the mean number of

rounds being 1.13 and the maximum being 2. For the 75% treatment, there were 600
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Figure 2: Response to transfer requests in Round 1, per match.

supergames played, with the mean number of rounds being 3.58 and the maximum

being 19. The cleanest comparison between the treatments occurs when comparing the

first round of matches: there are few second rounds in the 10% treatment, and later

rounds in the 75% treatment may be polluted with dynamic considerations within the

game.

A. Checking the Hypothesis

We start by looking at complacency rates. Figure 2 offers a match-by-match look

at Round-1 choices of Player 2 following transfer requests. Broadly speaking, we

see that bystanders agree to about 40% of transfer requests in the 75% treatment,

compared to well under 10% of them in the 10% treatment. However, there appears

to be some learning in the first few matches, as we anticipated. We tested 15 matches

to account for this possibility and be able to focus on the last ten. Henceforth, we

drop Matches 1-5 when performing statistical tests.

We use logistic regression to estimate the probability of Yes in Round 1 of Matches

6-15, conditional on a transfer request (using heteroskedasticity-robust standard errors

clustered by participant). The estimates appear in Table 1. The 0.419 probability of

agreeing to a transfer in Round 1 of the 75% treatment is significantly different from

zero (p-value 0.0000), and is significantly larger than the 0.070 probability in the 10%

treatment (p-value 0.0000). Though small, the latter is statistically different from zero
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at the 5% level (p-value 0.0248).4 Of course, the practical importance of complacency

rates hinges on the prevalence of transfer requests themselves. Without conditioning

on a transfer request, the overall estimated percentage of successful transfers in Round

1 is 4.9% when δ = 10% and 27.0% when δ = 75%. These are statistically different at

all standard levels of significance, as hypothesized (p-value 0.0000). A more detailed

analysis of Player 1 choices can be found in the next subsection; as will be seen there,

the majority of Player 1 choices in Round 1 are transfer requests, and the percentage

of such requests is very similar across the treatments. Thus the difference in the rate

of successful transfers is driven entirely by the difference in complacency rates.

δ = 10% δ = 75%
Complacency Rate 0.070

(0.031)

∗ 0.419
(0.075)

∗∗∗

Observations 244 258
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 1: Estimated complacency rates (Player 2 picking Yes following a transfer
request) in Round 1, Matches 6 to 15. Robust standard errors clustered by participant.

With an increase of more than twenty percentage points in successful transfers

when δ = 75%, one expects a surplus loss of 4 EPs compared to the baseline, along

with increased inequality (8 extra EPs for Player 1, a loss of 2 EPs for Player 2 and

a loss of 10 EPs for Player 3). Round 1 payoffs confirm this overall trend. Average

payoffs over Matches 6-15 for Players 1, 2 and 3 are 101.82, 96.37, and 97.57 EP,

respectively in the δ = 10% treatment; while they are 110.76, 96.30, and 86.50 EP,

respectively, in the δ = 75% treatment. As hypothesized, there is a decrease in total

surplus (p = 0.0000, Wilcoxon rank-sum test) and a clear increase in inequality due to

a significant transfer of EPs from 3 to 1. Magnitudes are a bit different from what the

theory predicts. In particular, average payoffs when δ = 10% are somewhat different

from the equilibrium prediction of 100 EPs each. The primary cause is the presence

of a small fraction of deductions and successful transfers in that treatment. We come

back to these observations as we explore players’ choices in greater detail in the next

two subsections. Small variations in magnitude such as these are to be expected given

that our benchmark analysis assumes that participants only care about maximizing

4One can think of many explanations why. Perhaps subjects in the role of player 2 see Deduct
as part of an equilibrium because they misperceive payoffs and continuation probabilities. They
may also be influenceable (experiencing a cost when not doing as requested), or may fear that their
matched subject has an intrinsic propensity to retaliate after a denial (intention-based preference).
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their monetary payoffs (similarly, a non-negligible fraction of participants cooperate

in prisoner’s dilemma experiments with low continuation probabilities).

B. Taking a Closer Look at Choices

Table 2 below provides further information on Player 1’s choices in the first two

rounds of Matches 6 to 15.5 We first focus on Round 1. Remember that Player 2

should always pick No in our benchmark analysis when δ = 10%. Given this, it is

dominated for Player 1 to pick Deduct when δ = 10%. Still, 6.3% of subjects did pick

it (p-value 0.0134). We see a 2% probability of first-round deductions when δ = 75%

(p-value 0.0363). Picking Deduct is part of a Pareto-dominated SPE when δ = 75%:

for example, expecting to play the (TRR,CFR) equilibrium after Deduct in Round 1,

and the (Baseline,No) stage-game equilibrium forever after Round 1 otherwise.

Round 1 Round 2 After No Round 2 After Yes
δ = 10% δ = 75% δ = 10% δ = 75% δ = 75%

Baseline 0.240
(0.063)

∗∗∗ 0.335
(0.062)

∗∗∗ 0.031
(0.032)

0.058
(0.031)

0.213
(0.075)

∗∗

Deduct 0.063
(0.025)

∗ 0.020
(0.010)

∗ 0.250
(0.089)

∗∗ 0.337
(0.091)

∗∗∗ 0.000
(−)

Transfer 0.697
(0.065)

∗∗∗ 0.645
(0.063)

∗∗∗ 0.719
(0.092)

∗∗∗ 0.606
(0.095)

∗∗∗ 0.787
(0.075)

∗∗∗

Observations 350 400 32 104 75
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 2: Estimated choice probabilities for Player 1 (and robust standard errors,
clustered by participant) in Round 1, Matches 6-15; and in Round 2, conditional
on reply to Round-1 transfer request (excluding δ = 10% after Yes, due to only 3
observations).

The theory does not make an irrefutable prediction about which of Baseline or

Transfer from 3 to 1 will be the choice of Player 1 in the first round. Picking the

latter is weakly dominant in our benchmark analysis when δ = 10%, but picking

Baseline while expecting player 2 to refuse transfer requests is also in equilibrium. And

Baseline is weakly dominant instead for subjects who dislike inefficiency or inequality.

No strategy is weakly dominant when δ = 75%, but the equilibrium set does expand,

5The conditional behaviors discussed in this section are the most relevant for identifying behavior,
but the interested reader may also be curious about how common the different outcomes themselves
are in later rounds. We include in the Online Appendix a table showing the percentages of each type
of outcome per round when pooling all Matches 6-15 in the δ = 75% treatment in which that round
occurred.
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and hence both Baseline and Transfer from 3 to 1 can occur. Whether a significant

number of transfers occurs in each treatment is thus an empirical question. We find

it is more likely than not that a subject in the role of Player 1 requests a transfer:

the estimates from Table 2 are both significantly larger than 1/2 (p-values of 0.0217

for δ = 75% and 0.0024 for δ = 10%). Moreover, there is no statistically significant

difference found when testing the joint null hypothesis that the Round-1 choices of

Player 1 do not differ across treatments (p-value 0.1825).6

In our benchmark analysis with δ = 75%, the potential for deductions in histories

where some transfers were denied is critical to make successful transfers possible.

Table 2 confirms that the use of deductions when δ = 75% is highly contingent on

whether the past transfer request was granted or denied. Subjects in the role of Player

2 were complacent in the first-round of 75 supergames (focusing on Matches 6-15),

and Deduct from 2 was never used against those subjects in Round 2. By contrast,

Player 2 is deducted in 33.7% of cases following a No response, which is statistically

different from zero (p-value 0.0002).

Deduct from 2 remains a dominated action in the second round when δ = 10%. Yet

25% of subjects pick it after being denied a transfer in the first round (see Table 2).

There are only 32 instances where a second round occurs after a No when δ = 10%,

so the numbers are small, but still different from zero (p-value 0.0047). Though

25% is certainly smaller than the estimated 33.7% who deduct when δ = 75%, the

difference is not statistically significant (p-value 0.4951) given rather large standard

errors. These are due to the small number of second rounds in the δ = 10% case, and

potentially due to high variance in behavior in the δ = 75% case (which we conjecture

is attributable to gender differences, as discussed further below). We cannot provide

estimated probabilities of Player 1’s Round-2 choices after Yes when δ = 10%, as

there are only three such instances in our dataset. It is safe though to conjecture the

deduction rate would be close to zero.

Why do we observe deductions following denied transfer requests when δ = 10%?

We cannot exclude the possibility that subjects misperceive payoffs and/or continu-

ation probabilities, prompting them to follow strategies that form an equilibrium in

6We note that we do not see significant evidence of learning by Player 1 in either treatment. For
instance, if one compares the rate of transfer requests in the first five matches versus the last five,
there is about 7.5% less requests at the beginning when δ = 75% and about 2% more requests at
the beginning when δ = 10%. Neither of these differences is statistically significant, even at the 10%
level (the smallest p-value, which is for δ = 75%, is 0.161).
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our benchmark analysis only for larger δ’s. Another possibility is that some subjects

have intention-based preferences, feeling unkind towards a Player 2 who denies a prof-

itable transfer request. Better understanding Player 1’s motives is an interesting topic

to explore in future work. Earlier papers on the prisoner’s dilemma suggest various

directions to pursue. In the spirit of Dal Bó (2005), one could contrast behavior when

the bystander game is played exactly four times, instead of being repeated with a 75%

continuation probability. One could also examine possible correlations between be-

havior in the repeated games and elicited individual characteristics of other-regarding

preferences (ORPs). Interestingly, the consensus from past studies on the prisoner’s

dilemma is that there is no robust evidence of individual characteristics (including

ORPs) having a systematic effect on cooperation when δ is high enough to support

cooperation as an equilibrium; see Dal Bó and Fréchette (2018, Result 7). By con-

trast, cooperation can be significantly correlated with ORPs when it is not part of an

equilibrium because δ is low (Dreber et al., 2014). Given this, one might conjecture

that deductions in the bystander game are driven primarily by strategic considerations

when δ is high, and primarily by ORPs when δ is low. Whatever progress is made

regarding Player 1’s motives, our conclusion that repetition can be detrimental is only

reinforced, given that ORPs provide an additional rationale here for bad repetitions.

What matters for complacency is Player 2’s fear of a likely retaliation if he turns down

a transfer request, which occurs only when the continuation probability is high and

does not hinge on Player 1’s motive for retaliating.

Finally, though our study was not designed to isolate the effect of gender on be-

havior, we do note some gender differences that may be worth examining in future

studies to evaluate their robustness.7 These differences mainly appear in the role of

Player 1; we find no significant gender differences in first-round choices in the by-

stander role (p-values 0.2265 for δ = 10% and 0.9929 for δ = 75%). As seen from

Round-1 behavior in Table 3, even though men and women act nearly identically as

Player 1 when δ = 10% (p-value 0.9307), behavior differs when δ = 75% (p-value

0.0351). While men are much more likely to request Transfer from 3 to 1 in the first

round than select Baseline, women are more evenly split between these options (see

Table 3). Moreover, behavior differs following a Round-1 denial of a transfer request.

7The game studied here, with the possibility of equilibrium strategies beyond Nash reversion, is
somewhat different than those considered in the survey of Dal Bó and Fréchette (2018). They note
that “there is no robust evidence” that gender has a “systematic effect on cooperation in infinitely
repeated games in which cooperation can be supported in equilibrium.”
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The rightmost columns of Table 3 show that behaviors are nearly reversed, with the

difference in choices statistically significant at all levels (p-value 0.0000). Men choose

Deduct from 2 about 73% of the time following a No, and repeat the transfer request

in most other cases, while women repeat the transfer request over 75% of the time,

and deduct in only 16% of cases. By contrast, we find no difference in behavior by

gender following a Yes from Player 2 (p-value 0.8117). We note that among subjects

in the roles of Player 1 and 2, 50% and 56.6% of those who provided their gender

identified as female in the δ = 10% and δ = 75% treatments, respectively.

Round 1 Round 1 Round 2 After No
δ = 10% δ = 75% δ = 75%
Men Women Men Women Men Women

Baseline 0.230
(0.084)

∗∗ 0.253
(0.096)

∗∗ 0.179
(0.074)

∗ 0.474
(0.087)

∗∗∗ 0.033
(0.034)

0.081
(0.051)

Deduct 0.070
(0.039)

0.053
(0.028)

0.021
(0.011)

0.022
(0.015)

0.733
(0.088)

∗∗∗ 0.161
(0.077)

∗

Transfer 0.700
(0.084)

∗∗∗ 0.693
(0.102)

∗∗∗ 0.800
(0.075)

∗∗∗ 0.504
(0.088)

∗∗∗ 0.233
(0.071)

∗∗∗ 0.758
(0.093)

∗∗∗

Observations 200 150 140 230 30 62
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 3: Estimates of Player 1’s choices by reported gender, with robust standard
errors clustered by participant.

5 Concluding Remarks

Despite its size, the experimental literature on repeated games focus on a relatively

small set of classic stage games, where the main question is the benefit of repeated

interaction. We find it worthwhile to widen the scope of the analysis: repetition opens

the door to negative conventions that do not Pareto-dominate repetition of one-stage

Nash (which of course necessitate the consideration of games where minimax utilities

are distinct from NE payoffs). We establish the possibility of such bad repetition in

the lab, by applying a standard random-termination protocol to a new stage game.

Our stage game admits weakly dominant strategies, a unique SPE outcome, and

a unique NE outcome. The equilibrium outcome is both egalitarian and Pareto effi-

cient. Yet other SPE outcomes, all of which are favorable to Player 1, arise when the

continuation probability is sufficiently high, because the possibility to punish Player

2 induces complacency at equilibrium. It remains an open question whether there are
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situations where high continuation probabilities result in Pareto-inferior outcomes.

More generally, work is needed to understand both the positive and negative implica-

tions of repeated interaction, and both how and why such conventions crystallize in

practice. For instance, investigating the potential role of risk dominance in selecting

conventions would be a natural step in this direction (see Result 3 in Dal Bó and

Fréchette (2018), and the discussion around it, for results and references on the role

of risk dominance as a determinant of cooperation in the infinitely-repeated prisoners’

dilemma).

Our game captures some stylized features of bullying and bystander complacency.

In particular, it focuses on aspects related to repetition, as we suspect that the likeli-

hood of repetition may play a role in that harmful phenomenon. While definitions of

bullying differ, a commonly used one states that “an individual is a victim of bullying

when he or she is exposed repeatedly over time to negative actions by one or more

individuals and is unable to defend him or herself” (Hamburger et al., 2011). However,

our game does not incorporate other important aspects that could be studied, such as

how roles as bully or victim arise (roles are exogenously assigned in the experiment,

and players are anonymous). Hence it should not be viewed as a full-fledged model of

bullying.
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Online Appendix for Bad Repetition

by de Clippel and Rozen

Experiment instructions attached on the next pages. See below for table of the

percentages of each type of outcome per round, when pooling all Matches 6-15 in

which that round occurred, in the δ = 75% treatment (# groups is the number of

trios of Players 1, 2 and 3 that are observed playing the game in that round).

Round Baseline Deduct Transfer/No Transfer/Yes # Groups

1 33.50% 2.00% 37.50% 27.00% 400

2 29.64% 12.86% 35.00% 22.50% 280

3 32.51% 5.91% 38.42% 23.15% 203

4 31.88% 15.22% 30.43% 22.46% 138

5 34.41% 9.68% 32.26% 23.66% 93

6 26.79% 17.86% 35.71% 19.64% 56

7 32.00% 18.00% 32.00% 18.00% 50

8 22.73% 9.09% 45.45% 22.73% 44

9 31.25% 15.62% 40.62% 12.50% 32

10 38.46% 7.69% 34.62% 19.23% 26

11 26.32% 10.53% 47.37% 15.79% 19

12 30.77% 0% 46.15% 23.08% 13

13 33.33% 16.67% 0% 50.00% 6

14 50.00% 0% 16.67% 33.33% 6

15 33.33% 33.33% 16.67% 16.67% 6

16 16.67% 16.67% 50.00% 16.67% 6

17 16.67% 33.33% 16.67% 33.33% 6

18 16.67% 33.33% 0% 50.00% 6

19 33.33% 0% 33.33% 33.33% 6



Welcome to this decision-making experiment! 

Please silence and put away electronic devices.  

Instructions  

You will receive an $8 show-up fee, and will be able to earn more. The exact amount earned 
will depend on chance and choices made during the experiment. 

The number of participants in this room is a multiple of 3, as there are 3 possible Player 
roles in this experiment: Player 1, Player 2 and Player 3. At the beginning of the experiment, 
the computer will randomly assign roles, making sure there are equally many Player 1’s, 
Player 2’s and Player 3’s. The computer will inform you of your role, which will remain fixed 
throughout the experiment. 

There are 15 rounds in this experiment. At the start of each round, the computer randomly 
places every participant into a three-person group. Each three-person group is constructed 
by drawing one Player 1, one Player 2, and one Player 3. Players stay in their three-person 
group for the duration of the round. 

How does a round unfold? 

Each round can consist of multiple stages, all of which are identical in structure. Once a 
stage is over, the computer throws a (simulated) 100-sided die and another stage occurs if a 
number lower than or equal to 75 comes up. Thus after every stage, there is a 75% chance 
that the round continues to another stage and a 25% chance that the round ends. Remember 
that everyone’s player role and matched group is the same across all the stages of a round.  

In each stage of a round, you will receive some experimental points (denoted EP) based on 
the decisions of players in your group. Your running total for a round is the sum of the points 
you received in the stages of that round. 

What happens in each stage of a round? 

The baseline payoff in every stage is 100 EP for each player; but within a group, the current 
stage payoffs can be modified from these baselines by Player 1’s and 2’s decisions as follows. 
Player 1 moves first and has three options: 

○ Baseline means the baseline payoffs are received in this stage.  

○ Deduct from 2 means Player 1 pays 2 EP, and 50 EP are deducted from Player 2’s baseline 
payoff in this stage. 

○  Transfer from 3 to 1 requires Player 2 to choose either Yes or No. If Player 2 picks No, 
baseline payoffs are received this stage. If Player 2 picks Yes, then both Player 1 and Player 
2 pay 10 EP, and there is a transfer of 50 EP from Player 3 to Player 1 in this stage.  



The following table summarizes the possible stage payoffs as a function of choices made: 

At the end of each stage, the stage’s outcome will be displayed to the three players. 

What happens at the end of the experiment? 

Once all rounds have been completed, there will be a short and optional exit survey. Your 
participation is voluntary and does not affect your payoff.  

At the end of the experiment, the computer randomly chooses one round for your payment. 
Your experimental-point total for that round will be converted to dollars at the rate of $0.05 
per experimental point. You will be paid the dollar payoff from your selected round in addi-
tion to the $8 show-up fee. All player identities remain anonymous. No one will learn what 
role you played or what payoff you earned. 

We are almost ready to start the experiment. Before doing so, there will be a short quiz to 
check your understanding of some key features of the experiment, as well as a chance to 
examine how the player decision screens work.

Player 1 
stage payoff (EP)

Player 2 
stage payoff (EP)

Player 3
stage payoff (EP)

Player 1: Baseline 100 100 100

Player 1: Deduct from 2 98 50 100

Player 1: Transfer from 3 to 1
Player 2: Yes

140 90 50

Player 1: Transfer from 3 to 1 
Player 2: No

100 100 100



Welcome to this decision-making experiment! 

Please silence and put away electronic devices. 

Instructions 

You will receive an $8 show-up fee, and will be able to earn more. The exact amount earned 
will depend on chance and choices made during the experiment. 

The number of participants in this room is a multiple of 3, as there are 3 possible Player 
roles in this experiment: Player 1, Player 2 and Player 3. At the beginning of the experiment, 
the computer will randomly assign roles, making sure there are equally many Player 1’s, 
Player 2’s and Player 3’s. The computer will inform you of your role, which will remain fixed 
throughout the experiment. 

There are 15 rounds in this experiment. At the start of each round, the computer randomly 
places every participant into a three-person group. Each three-person group is constructed 
by drawing one Player 1, one Player 2, and one Player 3. Players stay in their three-person 
group for the duration of the round. 

How does a round unfold? 

Each round can consist of multiple stages, all of which are identical in structure. Once a 
stage is over, the computer throws a (simulated) 100-sided die and another stage occurs if a 
number lower than or equal to 10 comes up. Thus after every stage, there is a 10% chance 
that the round continues to another stage and a 90% chance that the round ends. Remember 
that everyone’s player role and matched group is the same across all the stages of a round.  

In each stage of a round, you will receive some experimental points (denoted EP) based on 
the decisions of players in your group. Your running total for a round is the sum of the points 
you received in the stages of that round. 

What happens in each stage of a round? 

The baseline payoff in every stage is 100 EP for each player; but within a group, the current 
stage payoffs can be modified from these baselines by Player 1’s and 2’s decisions as follows. 
Player 1 moves first and has three options: 

○ Baseline means the baseline payoffs are received in this stage.

○ Deduct from 2 means Player 1 pays 2 EP, and 50 EP are deducted from Player 2’s baseline
payoff in this stage. 

○ Transfer from 3 to 1 requires Player 2 to choose either Yes or No. If Player 2 picks No,
baseline payoffs are received this stage. If Player 2 picks Yes, then both Player 1 and Player 
2 pay 10 EP, and there is a transfer of 50 EP from Player 3 to Player 1 in this stage.  



The following table summarizes the possible stage payoffs as a function of choices made: 

At the end of each stage, the stage’s outcome will be displayed to the three players. 

What happens at the end of the experiment? 

Once all rounds have been completed, there will be a short and optional exit survey. Your 
participation is voluntary and does not affect your payoff.  

At the end of the experiment, the computer randomly chooses one round for your payment. 
Your experimental-point total for that round will be converted to dollars at the rate of $0.05 
per experimental point. You will be paid the dollar payoff from your selected round in addi-
tion to the $8 show-up fee. All player identities remain anonymous. No one will learn what 
role you played or what payoff you earned. 

We are almost ready to start the experiment. Before doing so, there will be a short quiz to 
check your understanding of some key features of the experiment, as well as a chance to 
examine how the player decision screens work.

Player 1 
stage payoff (EP)

Player 2 
stage payoff (EP)

Player 3
stage payoff (EP)

Player 1: Baseline 100 100 100

Player 1: Deduct from 2 98 50 100

Player 1: Transfer from 3 to 1
Player 2: Yes

140 90 50

Player 1: Transfer from 3 to 1 
Player 2: No

100 100 100
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